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A comprehensive analysis of reflected intensity profiles generated by single-crystal diffractometric 
methods has been carried out. The observed profile U0(/0 is the multiple convolution of six component 
distributions: the intrinsic diffraction pattern or interference function, the source intensity distribution, 
the angle scale spectral distribution, the crystal size distribution, the crystal imperfection due to lattice 
distortion or strain, and the angular distribution of crystal blocks in the mosaic. Whenever the entire 
profile is generated by rotating the crystal at constant angular velocity through a range in excess of the 
range for which the multiple convolution has appreciable value, and when all the generated intensity 
is detected by either a stationary or moving detector which subtends an adequate aperture, the quantity 

I~ Uo(,O)dl3, is proportional to the integral of the intrinsic diffraction pattern at all 20 measured, 
d - -  oo 

angles. The constant of proportionality is the product of the integrals of the remaining components. 
Alleged differences between 'co' and '2:1' scans are due to failure to produce or to detect the entire profile. 

The experimental feasibility of isolating neighboring reflections depends upon the unit-cell size and 
the ranges of the component distributions. Because of the large inherent ranges of some of the com- 
ponent profiles, the production and detection of the entire resolved diffraction intensity is not always 
feasible. When crystal monochromators are not used, an evaluation of the systematic errors is intract- 
able. The control of experimental parameters, particularly the spectral band pass, through crystal 
monochromatization, however, reduces or eliminates systematic errors due to the truncated rotation 
of the study crystal and limited detector aperture. By considering the mechanism of intensity profile 
generation, a formalism has been developed by means of which the systematic error for a given set of 
experimental parameters can be theoretically predicted. 

Introduction 

The application of modern techniques has made pos- 
sible the rapid and automatic collection of large quant- 
ities of single-crystal X-ray diffraction data of high 
precision. At the same time, the advent of large capa- 
city, high-speed digital computers makes possible the 
manipulation and refinement of large masses of data 
to yield crystallographic data of great detail and com- 
plexity. Inevitably, however, it has been realized that 
the full power of modern techniques cannot be achieved 
without a thorough understanding of the various fac- 
tors entering into X-ray intensity measurements. Studies 
of integrated intensity measurements on the basis of 
convolution theory have been reported recently by 
Alexander & Smith (1962, 1964) and Burbank (1965). 
Their work has been limited to the case of non-mono- 
chromatized incident radiation, but makes use of a 
spectral model more appropriate to the case of mono- 
chromatized radiation, presumably for the sake of 
mathematical convenience. Moreover, an adequate ac- 
count of the effect of the 'background'  on intensity 
measurements has not been presented in the literature. 

* Preliminary account presented at Sixth Congress of 
I.U.Cr., Rome, Italy (1963), Acta Cryst. 16, A148. 

In this paper we outline the theory of single-crystal 
intensity measurement with the use of monochroma- 
tized radiation and the effect of some experimental con- 
ditions on possible systematic errors. 

Convolution theory 

An elementary consequence of convolution theory is 
that the area under an observed profile is the product 
of the areas under the individual component profiles 
which convolute to form the observed profile. Ideally, 
in structure analysis, one would like to measure the in- 
trinsic diffraction pattern. The area under this dif- 
fraction pattern is the theoretical integrated intensity 
from which the structure factor can be deduced. It is 
experimentally impossible to measure this diffraction 
pattern directly since the experimental conditions re- 
quired are strictly monochromatic parallel radiation 
and a perfect monocrystal. In a realistic experiment in 
which polychromatic divergent radiation is used in 
conjunction with real crystals which exhibit mosaic 
spread, etc., departures from the ideal give rise to what 
may be considered 'smearing' aberrations. These dis- 
tort the intrinsic diffraction pattern, yielding as an 
observed profile a multiple convolution of the intrinsic 
diffraction pattern and the smearing aberrational dis- 



104 THEOR°Y OF THE M E A S U R E M E N T  OF I N T E G R A T E D  I N T E N S I T I E S  

tributions. Since the area under the observed profile is 
the product of the areas under the component profiles, 
a relative measure of the area of the intrinsic dif- 
fraction pattern for each reflection is available from a 
realistic experiment, provided that the integral of the 
entire observable profile of each reflection is measured; 
the product of the areas of each of the smearing aber- 
rations will then constitute a constant scale factor*. 
Failure to measure the integral of the entire develop- 
able profile for a given reflection will give rise to an 
error in the determined F 2. Because the observed profile 
is expanded in a complicated way with increasing 20 
angle owing to the dispersive nature of one or more 
of the component profiles, it is not likely that the same 
percentage error will be made in failing to integrate 
completely profiles occurring at different 20 angles. 
Accordingly, for any technique of measurement in 
which only part of the integral of the entire profile is 
measured, determined structure factors will be subject 
to a systematic error. In general, for both the 2:1 and 
o) scan techniques, the systematic error (as a function 
of 20) will cause an underestimation of F 2 at high 20 
angles, and this would be revealed in electron density 
distributions as spurious contributions to the thermal 
vibration parameters and possibly incorrect atomic 
locations. In any event, knowledge of the existence of 
a systematic error is enough to invalidate conclusions 
as to the accuracy of a structure determination which 
are based solely on random error statistics. The im- 
portant significance of the convolution theorem is not 
only that it provides a formalism by means of which 
systematic error can be studied, but also that it permits 
an exact definition of integrated intensities which is 
consistent both with theory and with experimental ob- 
servables. 

To investigate the sources of possible systematic error 
in the measurement of integrated intensities, we must 
enumerate and investigate the nature of the component 
profiles and determine on the basis of a knowledge of 
the component profiles to what extent the measure- 
ment of the integral of the entire observable profile is 
feasible. Experimentally, control may be exercised over 
some of the component profiles to reduce or eliminate 
the sources of systematic error. Also, the technique of 
measurement can be optimized to minimize residual 
systematic error where present. The question of optim- 
ization, however, (e.g. whether the co scan or 2: 1 track- 
ing technique is more satisfactory) is a secondary con- 
sideration, since this practical question comes into 
focus only after experimental ingenuity has been ex- 
hausted in reducing the aberrational components. It 
may be easily inferred from the works of Furnas (I 957), 
Alexander & Smith (1962, 1964), Burbank (1964) and 
Ladell & Spielberg (1963) that the requisite minimum 
receiving apertures required for both the m and 2:1 
scan techniques are governed by the effective ranges of 

* The scale factor is constant after correction for the Lorentz 
and other geometric factors. 

the component profiles. When the minimum apertures 
are realistically maintained, the only practical differ- 
ence (on the basis of which one technique can be pre- 
ferred over the other) is that the technique requiring 
the larger aperture conceivably may involve a less 
favorable signal-to-noise ratio. On the other hand, 
where requisite minimum receiving apertures are not 
employed, or are unfeasible, and apertures smaller than 
the required 'minimum' apertures are used, there will 
be superimposed upon the systematic error of failing 
to generate the entire profile another source of system- 
atic error: that of failing to detect portions of the gen- 
erated profile. 

We use a condensed notation to characterize the 
observed profile. Let fl measure angular deviation of 
the study crystal from Bragg angle. Then Uo(fl), the 
observable profile, is given by 

go(]~)= gl *g2 *g3 *g4 *g5 *g6(]~) (1) 

for the case of nonmonochromatized incident radi- 
ation. Ul(fl) is the intrinsic diffraction pattern involv- 
ing the structure factor F, U2(fl) is the source intensity 
distribution, U3(fl) is the angle scale spectral distribu- 
tion, U4(fl) is the crystal size and shape distribution, 
Us(fl) is the radial mosaic spread component or dis- 
tribution-in-d (Ladell, 1961), and U6(fl) is the transverse 
(angular mosaic spread) distribution. A summary of 
these distributions and the aperture contributions they 
imply is shown in Table 1. We distinguish between dis- 
persive and nondispersive components (as do Alexan- 
der & Smith) reserving odd indices for dispersive com- 
ponents. Also, we specify the range in fl over which 
each of these distributions exists by subscripting ft. 
Thus, U~(fl) is nonzero in the range (-fl~, fl0. 

Alexander & Smith (1962, 1964) have discussed the 
distributions Uz(fl), U3(fl), U4(fl)and U6(fl), and have 
formulated a reasonable procedure for attacking the 
problem. Unfortunately, for the sake of mathematical 
convenience they were apparently forced to adopt a 
spectral model U3(fl) which is so different from the 
actual conditions of experiment (particularly when Mo 
or Ag K radiation is used) as grossly to vitiate their 
analysis. On the other hand, were more realistic mod- 
els adopted, both for the spectral and other compon- 
ents, the analysis would prove intractable in the case 
of fl-filtered radiation. In succeeding sections of this 
paper we will discuss experimental conditions under 
which a physically realistic and mathematically tract- 
able spectral model can be obtained. 

Similarly, the assumption of a Gaussian model for 
U6(fl) has serious consequences on the correct elucida- 
tion of both the physical aspects of crystal imper- 
fection and the implied extent of minimum receiving 
apertures. This is true because in order to make sound 
and effective use of a theory based upon convolutions 
in the significant interpretation of single-crystal dif- 
fractometric profiles, one must take adequate account 
of the infinite ranges of some of the component pro- 
files. A consequence of convolution theory is that if 
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each of the component distributions Ui(fl) is nonzero 
in the range (-fl~, fl~) then the range of Uo(fl), (-rio, rio), 
is such that 6 

2P0= 2 Z/~i. (2) 
i=1 

While equation (2) is strictly valid in defining the 
range over which Uo(fl) has nonzero value, it should 
be emphasized that fl0 is infinite if any of the fl,'s are 
infinite. Some of the distributions are indeed of infinite 
range. It becomes necessary in practice to truncate 
these distributions by replacing true ranges with effect- 
ive ranges. When, however, infinite ranges are replaced 
by effective ranges, equation (2) does not retain its va- 
lidity for indicating the effective range 2f10 as equal to 
2 X fit. Thus, for example, if it is stipulated that, for a 
distribution Ul(fl) monotonically decreasing towards 
+fl  and - f l ,  we define the effective range as that which 
includes the portion of the profile between abscissae 
for which the corresponding ordinates on both sides 
of the profile have fallen to 0.1 ~ of peak value, it will 
be fortuitous if the effective range of the observed pro- 
file U0(fl), similarly defined, is equal to the sum of the 
effective ranges of the component distributions. As a 
consequence, one cannot deduce the effective ranges 

of the component distributions. As a consequence, one 
cannot deduce the effective range of an individual com- 
ponent distribution by subtracting from the observed 
effective range of the observed profile the presumably 
known ranges of the other component distributions. 

In applying convolution theory to observed profiles, 
particularly where high backgrounds are encountered, 
one must be careful to distinguish between coherently 
scattered radiation and incoherently scattered radia- 
tion. The nature of coherently scattered radiation, 
whether due to a characteristic line or white radiation, 
is such that its presence in the observed profile is not 
restricted to the base of the profile. Accordingly, neglect 
of the apparent background in horizontal truncation 
procedures introduces a source of systematic error un- 
less the apparent background is virtually all incoherent 
scatter. On the other hand, if the background contains 
a mixture of coherent and incoherent radiation in 
significant proportions, inclusion of background also 
introduces an error due to the unknown incoherent 
portion. Thus, to avoid indeterminate systematic error 
in treating the background, experimental conditions 
should be chosen so as effectively to diminish sources 
of background. 

Symbol Description 

Table 1. Component distributions 

Model Remarks 

Requisite 
contribution to 

receiving aperture 
co scan 2:1 

UI(/D 

u2(/~) 

Intrinsic diffraction 
profile 
1. Small mosaic 

2. Large mosaic 

3. Real crystal 

Source distribution 

F 2 exp ( -Kf l2 )  

Laue term = 
G(F) 

1 + Kfl 2 

Bragg term = 
G(F) H(fl) 

1 + K ( B -  ct)2 

Mixture of (1) 
and (2) 

1 - ½ cosh 1"3,8 
1,81 < IP21 B2 
O elsewhere 

Delta function 

F< G(F) < (F2) 
ct displacement 
due to refraction 

Real case probably 
asymmetric 

4fix 0 

2]32 2]32 

u3(#) 

u4(#) 

us(#) 

U6(fl) 

Angle scale spectral 
distribution 
1. Filtered 
2. Monochromatized 

Crystal size 
(sphere) 

Radial mosaic 
disorder 

Normal  mosaic 
angular 
distribution 

Fig. 1 (b) 
Fig. 1 (c) 

sin2 r4 - sin2 ]3 
IPl~lfl41 
0 elsewhere 

Distribution 
in d spacing 

Usually assumed 
Gaussian 
Possibly Cauchy 
distribution 

'Infinite' range 
Truncated Cauchy 

Vertical 
divergence 
assumed negligible 

Probably 
anisotropic 

Effective range 
large if Cauchy 

4fl3 

4]34 COS 0 

4/~5 

0 

0 

4]J4 cos 0 

0 

4#6 
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Description of component distributions 

The distribution Ul(fl), the intrinsic diffraction pattern 
according to the dynamical theory for a perfect single 
crystal with a spherical boundary, has not been worked 
out in detail. Depending upon the 20 angle, the distri- 
bution should be some weighted average of the Bragg 
and Laue diffraction patterns (Zachariasen, 1945). The 
distribution Ul(fl) should be extremely narrow, having 
a line width (full width at half maximum) of a few 
seconds of arc at small 20 angles. The Bragg term 
should cause a small displacement of Ua(fl) from the 
calculated 20o position (corresponding to the d spacing 
and wavelength 20) owing to refraction; the distribution 
should be asymmetric at high 20 angles where the 
Bragg term predominates and should be more sym- 
metric at low angles where the Laue term predomin- 
ates. The decay of Ul(fl) away from the central region 
for both terms is of the order I/ilL 

For real crystals showing small extinction effects 
the dynamical theory can be replaced by the kine- 
matical theory. For this case Ul(fl) is the interference 
function in which the decay from the peak is the same 
as that of a Gaussian distribution. Generally, we shall 
consider Ul(fl) to be a delta function replaceable by a 
constant proportional to F z, but the validity of this 
assumption rests upon the variance of Us(fl) and U6(fl). 
The kinematic theory can replace the dynamical theory 
if the crystal is a mosaic of smaller crystals. Since 
Us(fl) and Uo(fl) are 'mosaic distributions', their var- 
iances must be relatively large if the small crystal blocks 
forming the mosaic aggregate are to be small enough 
for the diffraction pattern U~(fl) to be approximated 
by a Gaussian distribution with narrow line width. 
This is true because a narrow mosaic distribution would 
imply that there was considerable extinction. Thus, if 
the crystal is ideally imperfect, the variances of Us(fl) 
or U6(fl) should be expected to be large. In other words, 
regardless of the state of crystal perfection, the con- 
volution of UI *Us * U6(fl) must exist over a consider- 
able range. 

For Uz(fl), the source intensity distribution, we have 
taken as a model 

U2(fl) = 1 -½ cosh 1"32fl 
f12 Ifl[-< [fl21 (3) 

u2( /~ )  = o 1/31 _ I/~21 • 

The analytic expression given in equation (3) agrees 
roughly with measurements we have made of the focus 
of our X-ray tubes, except that experimental source 
intensity distributions are not necessarily symmetric. 
]32 is the half angle subtended at the crystal on the 
projected focus. 

In considering the spectral distribution, we distin- 
guish between the spectral distribution V3(fl) passing 
through the X-ray tube window and the effective 
spectral distribution, U3(fl), which is a modification of 
V3(fl) effected by filtration, pulse amplitude discrim- 
ination and/or crystal monochromatization. V3(fl) is 

the wavelength distribution of intensity available just 
outside the X-ray tube window (translated into the 
angle scale of the study crystal through Bragg's law); 
as such it includes the entire spectrum emitted by the 
tube including the white radiation as well as the char- 
acteristic lines (we neglect air path absorption). In 
Fig. 1 (a) is shown approximately a typical spectrum on 
a wavelength scale from a Mo target tube incident on 
a study crystal. This distribution was generated at 50 
kV using a single spherical topaz crystal in a linear 2:1 
scan in which d (sin O)/dt was constant. The range of 
the scan in 20 was from about 15 to 150 ° 20. (Unavoid- 
ably, a second order spectrum also appears.) The cir- 
cular detector aperture used was approximately 0.9 ° . 
Full scale on the chart is 10% of the peak intensity of 
the Kcq line. A bland (nickel) filter was used to dim- 
inish counting losses due to nonlinearity. The spectrum 
shown is clearly not a 'pure' spectrum since aberration- 
al components are present. Nevertheless, the essential 
nature of the spectral effect is apparent. In Fig. l(b) 
is shown an approximate spectral distribution which 
was generated under the same conditions as in Fig. l(a) 
except that a Zr filter and pulse amplitude discrimi- 
nation (Parrish & Kohler, 1956) were used. Certain 
features should be noted. At the Zr edge the height of 
the profile is 2.3% of the K~I peak intensity. The re- 
sidual Kfl line transmitted is 2.09/0 of the peak height. 
On the long-wavelength side the profile decays rather 
slowly. The profile extends over a range in wavelength 
in excess of 0.41 A. If one integrates the portions of 
the profile exclusive of a narrow band within which 
the Ke doublet is included, as suggested in the horizon- 
tal truncation procedure of Alexander & Smith (1962), 
one finds that 30% of the area under the profile is 
exterior to the characteristic Kc~ lines. Also, as shown 
in Fig. 2, where the 2:1 scan of the 00I reflections ob- 
tained with Zr-filtered radiation is compared with the 
same scan taken with crystal monochromatized ra- 
diation, the effective range of the filtered spectrum is 
approximately 40 times the effective range of the crys- 
tal monochromatized spectrum. The 'background' 
shown in Fig. 2(a) (compared with Fig. 2(b), where the 
background is negligible) reveals several important 
facts: (1) The background, which is here primarily due 
to coherent scattering, is not uniform. (2) In viewing 
the 0,0,12 profile, one observes interference of this 
profile with the profiles due to 0,0,10, 0,0,14 and 
0,0,16. Since the c lattice parameter is only of the 
order of 8.5 A, Zr-filtered Mo radiation will not pro- 
duce resolved lines. In fact, these interferences cannot 
be avoided except possibly for cells having lattice con- 
stants of 2.1 A or less. 

Since reflections overlap when filtered radiation is 
used, one must resort to arbitrary truncation proce- 
dures to attempt to isolate individual reflections. Such 
procedures must attempt to reject systematically the 
same portion of 'unwanted radiation' at all 20 angles 
and must in practice also take into account the inter- 
action of adjacent or neighboring reflections. An an- 
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alysis of systematic error is thus intractable since even 
larger errors are introduced by the unavoidable trun- 
cation procedures, however judiciously applied. 

In Fig. l(c) is shown  approx ima te ly  the spectral  
d i s t r ibu t ion  inc ident  on the s tudy crystal  when  a 
m o n o c h r o m a t o r  is used. One  effect of  using the spec- 
t r u m  shown  in Fig. l(c) is v i r tual ly  to eradicate  back-  
g round  as shown  in Fig. 2(b). 

In  our  exper imenta l  work  we have  been using crys- 
tal  m o n o c h r o m a t i z e d  rad ia t ion  a lmos t  exclusively for  
the last  five years.  We  feel tha t  the advan tages  of  con- 
t rol l ing the range  of  the spectral  d i s t r ibu t ion  in the in- 
c ident  beam in this m a n n e r  are well wor th  the min ima l  
extra  effort required.  W e  shall cons ider  the effective 
spectral  c o m p o n e n t  U3(fl) using crystal  m o n o c h r o -  

% of 
Ka peak 
intensity 

101 Kp Ka 

!Cont. 

_ _ ~  2nd Order  

0"2 0"4 0"6 0'8 1"0 1"2 1"4 1"6 
10  (a) Y (A) 

°/o of 
Ka peak 
intensity 

K,', 

5 

Zr K edge 

0"6 0"8 1"0 
(b) 

2nd Order  

¥ (A) 
10T 

o/o of i 
Ka peak i K a l 
intensity 5 t 

J 
1 2nd Order 

1 f I , ,  
o.~ '0.8 v (A) 

(c) 
Fig. 1. Effective spectral distributions. Peak intensities are nor- 

malized at 100 %. (a) Profile generated when incident beam 
is 'normal' unfiltered Mo radiation. (b) Profile generated 
when Zr filter is used with pulse amplitude discrimination. 
Area above dotted line is only 70 % of the total area of the 
distribution. The effective spectral band pass, ignoring the 
obvious contribution of white radiation at low wavelengths, 
is greater than 0.4 ,~. (c) Profile obtained using a (10i') quartz 
monochromator. Background is negligible. Recorder time 
constant makes base width appear wider than the effective 
spectral band pass of 0.01 A. (See Fig. 10). 

matization in more detail in the next section, after 
proceeding with a description of the other aberrational 
components. 

For spherical crystals we assume that the crystal size 
factor U4(fl) is given by 

U4(fl)=sinEflg-sin2fl  lfll < lfl41 
U4(fl) =0  Ifll-lP41 • (4) 

Here,/?4 is the half angle subtended from the crystal at 
the source. Implicit in equation (4) is the simplifying 
assumption of no vertical divergence. 

In the mosaic structure model, Darwin (1922) dis- 
tinguished between two types of disorder: (1) atoms 
are arranged in layers which deviate from planarity, 
and (2) the crystal is composed of an assemblage of 
smaller, ideal crystal blocks, each block slightly mis- 
oriented with respect to its neighboring blocks. In the 
category (1) can be included such anomalies as lattice 
distortion, dislocation edges, and strain. This disorder 
can be treated by a crystal model in which a set of dif- 
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Fig.2. Comparison of normal and crystal monochromatized 
radiation for the 00l spectra of topaz. 2:1 scan generated at 
d(2 sin O)/dt--O.03 r.l.u, min-1 was used with target focus 
8 × 0.4 mm with a 3.5 ° angle of view. The topaz crystal 
diameter was 0.4 mm. (a) Incident beam was Zr-filtered 
Mo radiation. The signal-to-noise ratio measured adjacent 
to K~ peak of 0,0,12 reflection was 30:1. (b) Incident beam 
was (10I) quartz monochromatized. The signal-to-noise ratio 
measured adjacent to the K0¢ peak of the 0,0,12 reflection 
was 1000:1. This high signal-to-noise ratio readily reveals 
forbidden reflections 003, 007, 009 and 0,0,11, designated 
by F. 
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fracting planes giving rise to a specific reflection is char-- the source and study crystal distributions U2(f) and 
acterized as follows. The distance between successive 
planes is not constant, but varies statistically through- 
out the crystal. If ~* is the mean reciprocal spacing 
(e*= 1/d), then Us(r*-~*) Ar* is the frequency of oc- 
currence of parallel diffracting planes giving rise to the 
specific reflection for which the spacing deviates from 
the mean by ( r*- f*) .  Since the same defect operates 
for higher orders of a given reflection, the distribution 
is dispersive. Us(f) is a 'strain broadening' aberration 
which gets larger with 20. In the reciprocal space pic- 
ture Us(f) is represented as the extension of a point into 
a radial streak (see Fig. 8). In a prior paper (Ladell, 
1961) we have assumed that Us(f) is a Gaussian dis- 
tribution, but have not offered experimental evidence 
that this assumption is justified. 

U6(f) is the angular distribution of crystal blocks 
forming a mosaic and is due to the second of Darwin's 
disorders. The reciprocal space picture of this distribu- 
tion is the extension of a point in the reciprocal lattice 
to a spherical cap (see Fig. 7). Thus, both Us(f) and 
U6(f) have the effect of smearing an ideal reciprocal 
lattice point into an 'ellipsoidal' volume of concen- 
trated central density. Although a Gaussian distribu- 
tion is generally assumed, we have evidence (discussed 
below) that suggests this distribution may have ap- 
preciable Cauchy character for some crystals. For less 
imperfect crystals, as the distribution U6(f) becomes 
narrower, there must be an accompanying change in 
the dominating character of UI(f), as stated earlier. 
Whereas for crystals having a wide U6(f), Ul(f) is 
dominated by the Gaussian character of the interfer- 
ence function; for crystals having U6(f) narrow, Ul(fl) 
is dominated by the slowly decaying Cauchy character 
of the intrinsic diffraction pattern. Thus, the convolu- 
tion U1 *U6(f) should theoretically converge to a 
Cauchy distribution rather than a delta function since 
transition from imperfect (large mosaic spread) to per- 
fect (no mosaic spread) involves transition from the 
kinematical to the dynamical viewpoint. Therefore, the 
observed profile Uo(f) should exhibit a slow decay, but 
it will be difficult to ascribe this slow decay to either 
U6(f) or UI(/~) exclusively. 

Intensity profiles for crystal-monochromatized radiation 

The form of Uo(f) for crystal monochromatized in- 
cident radiation is different from the case of non- 
monochromatized radiation because of the angular 
dispersion introduced into the incident beam by the 
monochromator. Thus, in the nonmonochromatized 
case, all wavelengths are contained in all possible rays 
incident on the study crystal. In the monochromatized 
case, however, to a first approximation, to each di- 
rection of incidence on the study crystal there corre- 
sponds a specific wavelength. The degree of departure 
from this approximation is determined primarily by 
the diffraction properties of the monochromator crys- 
tal (rocking curve and dispersion) and secondarily by 

U4(fl). We replace U2 *U3 *U4(fl) in equation (1) by a 
new function UM(fl), representing the radiation from 
the monochromator irradiating the study crystal, so 
that 

Uo(fl) = U1 * UM * 05 * V6(fl) • (5) 

In deriving Urn(f) we will consider the functions 
Vi(Afl), where tan 0m 

A = tan 0 + tan 0m (6) 

and is introduced to allow for the dispersion of the 
monochromator crystalt. The functions Vi(Afl) are 
characteristic of the monochromator crystal in anal- 
ogous manner as the functions Ui(fl) are characteristic 
of the study crystal" VI(Af) is the intrinsic diffraction 
pattern of the crystal monochromator; V3(Af) is the 
unmodified spectral distribution at the window of the 
X-ray tube, expressed on an angle scale; Vs(Afl) and 
V6(Af) are the radial and angular mosaic spread dis- 
tributions respectively of the monochromator crystal. 
V2(Af) is the virtual source intensity distribution [equal 
to U2(- Aft)] and V4(Af) [= U4(Af)] is the study crystal 
size distribution. 

We consider first the dispersive components (those 
with index i odd) for point source and point study 
crystal. For these we may write 

V~,lr(f) = VA * V3 * V5(AB). (7) 

The implications of equation (7) alter the simple 
geometric picture of the point source (perfect) mono- 
chromator and point study crystal in which only one 
unique wavelength can arrive at the point study crystal 
along a fixed path. For the more general case for which 
equation (7) applies, a distribution of wavelengths can 
traverse the same path from source to study crystal. 
To simplify the following discussion, we shall refer to 
the wavelength associated with VI(0), V3(0) and II5(0) 
(or the unique wavelength of the simpler case) as the 
'central' wavelength. 

Considering now (Fig.3) the source distribution 
Vz(Afl), each point on the source sends toward the cen- 
ter of the study crystal (by virtue of the monochro- 
mator) a different 'central' wavelength. Thus, each 'cen- 
tral' wavelength incident on the center of the study 
crystal comes from one and only one point of the 
source. In producing the observable distribution U0(B), 
unlike the nonmonochromatized case, the source dis- 
tribution Vz(A/~) is not convoluted with the distribution 
U'M(fl), but operates as multiplier of U'u(f). Similar 
considerations apply to V4(Afl). The combined effect 
of Vz(Afl) and V4(Af) then is to give rise to 

U~v/(f) = IV 2 * V4(Af)]OM(f) 
=[V2 *V4(Af)][V1 "I/3 *Vs(Afl)]. (8) 

We refer to the function [Vz *V4(Af)] as a 'stencil' 
function. 

t Equation (6) assumes that the monochromator, study 
crystal and detector are arranged to develop and observe dif- 
fraction in the conventional anti-parallel position. 
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The significance of the stencil function is that it forces 
finite limits onto the spectral range incident on the 
study crystal. 

We now consider the effect of the function V6(Afl). 
Fig. 4 shows a ray diagram of a point source S, mono- 
chromator crystal, and point study crystal P. We 
neglect  VI (A f l )  and Vs(Afl). When the monochromator 
is properly adjusted, a central ray of wavelength 2 and 
intensity V3(0) proceeds along p, making an angle 0 
with the diffracting planes of the monochromator and 
is diffracted with intensity V3(0) Vx(0) through an angle 
20 along q toward the study crystal P. Due to the 
angular mosaicity function, V6(a) of the monochro- 
mator crystal, another ray of wavelength 2' and intensity 
V3(6) can proceed along p '  and be diffracted through 
20' along q' toward P. We wish to know the spectral 
distribution IV(7) incident on P. For any wavelength 
the intensity arriving at P is given by IV(y)= V3(6). 
V6(a), where & and a are deviations from the Bragg 
angle of the monochromator crystal. The following 
relationships among a, 6, and 7 are derived in Appen- 
dix A as equations (A17), (A14) and (A15), 

~q+P o'+ = ½ s i n - l [ ~  [ ( q - p ) _ _ .  COS (OM'q- 26) 

sin OM +_ R cos OM]} (9) 

f Crystal 

Soo,ce / /  

Monochromator 
Fig. 3. Effect of monochromator on radiation incident on center 

of study crystal. 

FC 

P 

q Y 
S p" 

~ l  " -" " 

Fig.4. Ray diagram for point source and study crystal with 
monochromator. S source; P study crystal; M monochro- 
mator; F C  focusing circle; p, p'  distances from S to point 
of reflection on monochromator surface; q,q' distances from 
P to point of reflection on monochromator surface; OM, 
OM" Bragg angles for monochromator crystal; 7 angle be- 
tween central ray and any other ray incident on P. 

where 
y = ( a + f i )  (10) 

R = V4a z - (p+q)z cos 2 (0M+26) (11) 

and 2a, the distance from S to P is given by 

2a = Vp2+q2+ 2pq COS 20M. (12) 

It should be no ted  that a, and hence 7, is double 
valued: This means that the intensity distribution in- 
cident at P has two branches; i.e. 

I v ( y ) =  W+(y)Av W-(y) = V3(6)[V6(o'+)-[- V6(o'-)] (13) 

where the + and - signs are associated with the 
choice of sign in equation (9). The dispersion in the 
two branches of W(7) is in opposite directions. The 
behavior of W(7) is discussed in detail in Appendix B. 
As shown in Appendix B, however, one of the branches 
of W(y) may be considered negligible for reasonable 
and judicious choices of the variables p and q and of 
Vr(a) and V3(6). We need therefore choose only the 
branch for which a is given by equation (B5) or (B6) 
of Appendix B. Accordingly, the choice of sign indi- 
cator may be dropped and a denoted by: 

1 p + q  
a - [(p + q)2 COS 20M -- ( p -  q)2 sin20M] 6 

4a 2 p -- q 

= V6. (14) 
Consider the study crystal at P. When the crystal is 

rotated, the incident distribution IV(7) will be dif- 
fracted. As we have seen in the case where the mosaic 
spread V6(a) was excluded, rotation of the study crys- 
tal involved a magnification factor A, given by equation 
(6). This magnification factor is merely the trigono- 
metric factor which is derived in double crystal diffraction 
for the anti-parallel situation. For the case at hand, i.e. 
point crystal, point source and appreciable V6(a), the 
different wavelengths converge on the point crystal. 
Accordingly, the magnification factor can no longer be 
derived on the basis of the anti-parallel geometry, in 
which convergence to the same point on the second 
crystal by different wavelengths from the same source 
point cannot occur. The appropriate correlation be- 
tween the incident angular variable, 7, and the dif- 
fracted variable, fl, is given by 

where 

tan O M 
f l  = - 7 + & tan------O ( 1 5 )  

7 = ( 1 + / - ) 8 .  

If  we consider all the various component functions 
for the monochromator crystal, we finally arrive at a 
first order expression for UM(fl): 

UM(fl)=[V2 *V4(Afl) *V'6(fl)][V1 "113 *Vs(Afl)] (16) 

where 

( flFtanO ) (17) 
V'6(fl) = V6(a) = 1"6 t an0M - (F + 1) tan0 " 
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The most significant effect of crystal monochro- 
matization is apparent from equation (16). Since both 
Vz and V4(Afl) are distributions which extend over 
finite (controllable) ranges, and since V6(cr) can also be 
controlled (Appendix A), the convolutions V2 * V4(Afl) 
and Vz * V4(Afl) * V6(fl) extend over finite ranges. The 
distribution Vz * V4(Afl) * V6(fl) 'stencils' the post factor 
V1 *V3 *Vs(Afl) (which is infinite in extension) and 
restricts the incident beam distribution to include only 
a finite (or truncated) spectral band pass. 

If we assume that VI(Afl) and Vs(Afl) are 'delta 
functions', the wavelength distribution in the beam in- 
teracting with the study crystal UaM(2 - 20) is given by 

U2_M(~_~O) = UM((5)  d(~ _ V3(~)[V 2 8¢V4(~ ) *V6(/"(~)] 
d2 20 (cot 0M cos fi - sin fi) 

(18) 
where 6 is the deviation of a given ray from the central 
ray reflected by the monochromator,  

sin (0M + 6) 
2 = 20 sin 0u  

and 0M is the monochromator angle for which the 
principal wavelength of the central ray is 20. It should 
be noted that U~(2-20)  is not merely the wavelength 
distribution reflected by the monochromator,  but is 
weighted by the available diffracting power distribution 
of the study crystal [because of 1/4(6)]. Accordingly, 
U~(2 -20)  is very much determined by the size and 
shape of the study crystal. 

For  narrow mosaic spread V6(FS), the effective 
spectral band pass is slightly greater than the range of 
the stencil function V2 * V4(6). The width of the band 

pass can be made narrower by using a narrower focal 
source, smaller study crystal, or a monochromator of 
higher dispersion (smaller d spacing). A narrower focus 
is achievable by taking a smaller angle-of-view for a 
given focal dimension, or what is more effective, using 
a brighter focus of smaller focal dimensions. Using 
smaller study crystals and more dispersing monochro- 
mators, of course, causes a reduction in absolute inten- 
sity, but this is offset by an improved signal-to-noise 
ratio. 

Fig. 5 shows the effects of altering the distribution 
1/1(6) in the formation of the spectral band pass UM(fl) 
in monochromatizing the WLfll line. In Fig. 5(a), the 
entire Lfl spectrum is shown as generated in a 2:1 scan 
of an 0.5 mm diameter quartz study crystal, without 
using a monochromator.  The abscissa has been con- 
verted to a wavelength scale, and the intensity ordinates 
are such that full scale represents 10~  of the Lfll peak. 
In Fig. 5(b), (c), and (d), a 10.1 quartz monochromator 
was used. In Fig. 5(b), the projected focal distribution 
was 1 mm wide, corresponding to an angle-of-view of 
6 °. In Fig. 5(c), the projected focal distribution was 0.5 
mm wide, corresponding to an angle-of-view of 3 °. In 
Fig. 5(d), the projected focal distribution was 0.1 mm 
wide, accomplished by using the line focus instead of 
the spot focus. 

Because of the numerous characteristic lines in the 
Lfl spectra [Fig. 5(a)] the theory presented above can 
be readily checked by monochromatizing in this region. 
Both at 3 ° and 6 ° angles-of-view the lines adjacent to 
the Lfl~ are attenuated, the attenuation being more 
pronounced further away from the Lfll line. For the 3 ° 
curve (obtained in a 2:1 scan at 101.2 ° 20), the effective 
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"6 
° 1 i  i o 0 . . . . .  a . . . . .  , ., . 

1 "220  1 "251  (a )  1 "282  1 ' 313  A (A , )  

1Q  , ~ , 

E 

° o _ i _ 1 6 1 1  
5 (deg) 

(c) (d) 

[ - - -  ' = . . . . .  , , , 10  

13, 

[- ~6 5 

- - - -  0 
1.2'51 1.282 (b) 1.313 A(A) 

. . . .  - - - ! ' I  0 

13, 

-2  -1 o ~ i 
5 (deg )  

Fig.5. Effectiveness of monochromatization in relation to projected focal dimension. Abscissae shown are on wavelength and 
angle scales. (a) WLp spectra generated without monochromator. (b) (10i) monochromator is used with 6 ° angle-of-view; 
projected focal dimension is 1 mm; study crystal diam. 0.5 ram. Strong WLfl2 line is effectively eliminated, but significant 
stumps of LP3, L#6 and L#4 remain. (c) At 3 ° angle-of-view with projected focal dimension 0.5 mm further monochromatization 
is effected. WLfl4 is reduced to an almost negligible quantity. WLfl3 and WL~6 are still seen, but with significant decrease in 
intensity. (d) Line focus is used with projected focal dimension 0.1 mm. All lines except the desired WLfll are completely 
eliminated. 
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band pass appears to be 0.052/~. This value is more 
than the width that should be manifest in the absence 
of a mosaic spread component V6(fl). Thus, for the 3 ° 
angle-of-view the band pass should be somewhat great- 
er than 0.037 A and the experimental results confirm 
this, since the characteristic lines at the extreme ends 
of the profile are attenuated to such an extent that 
their presence is barely visible. In the 6 ° case the theory 
predicts the band pass should be greater than 0.073 A. 
Although the Lfl4 and L/73 lines are attenuated by ap- 
proximately a factor of 4, their readily observable pres- 
ence indicates that the band pass is larger than the 
portion shown. The curve for the 6 ° angle-of-view 
demonstrates the necessity for spectral fiducial marks 
in determining the extent of the band pass. Unless we 
can extend the data for Fig.5(c) to include regions 
where the WLfl2 and WLfls lines should be observed, 
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Fig. 6. Stencil function V2* V4(fl) for the following experimental  
condit ions:  crystal diameter is 0.5 mm,  virtual source to 
crystal distance is 175 m m  and the focal spot  dimensions 
are 10.0 x 1.6 mm.  Curve A is calculated for an angle-of- 
view 3 °, the case for Fig. 5(c). Curve B is calculated for an 
angle-of-view of  6 °, the case for Fig. 5(b). 
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Fig.7. Two representations showing role of  nondispersive 
factors in Ewald construction.  (See text.) 

% 
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Fig. 8. Two representations showing role of dispersive factors 
in Ewald construction. (See text.) 

we are unable to distinguish between a slowly varying 
coherently diffracted background (white radiation), 
which should be included as part of admitted spectrum, 
and the incoherently scattered background which must 
be excluded as already noted above. In Fig. 5(d), the 
neighboring lines are completely removed; but, of 
course, this has been accomplished at great loss of in- 
tensity. 

Fig. 6 shows the assumed stencil functions V2 * V4(fl) 
operative for the cases shown in Fig. 5(b) and (c). These 
are based upon the models already discussed. 

S y s t e m a t i c  e r r o r s  

While a description of the integrated intensity profile 
in terms of convolution theory is convenient for under- 
standing the role of the various component inter- 
actions giving rise to the given observed profile, a much 
simpler description is desirable for graphic visualization 
particularly when one wishes to consider qualitatively 
the manner in which the component distributions cause 
superposition of adjacent profiles, a source of system- 
atic error. 

In Fig. 7 the role of nondispersive factors is shown 
in two representations. In the left-hand construction 
are shown two limiting circles of reflection and an ar- 
ray of points representing the reciprocal lattice of a 
crystal. The circles of reflection intersect at the origin 
of the reciprocal lattice and are displaced from each 
other by an angle which represents .the angular range 
of nondispersive components such as the source and/ 
or crystal range. Since the lunes are generated by 
circles of reflection which can be drawn for incident 
rays included within the limiting rays shown, all re- 
ciprocal lattice points included within the lunes are in 
reflecting positions. This same reflecting condition is 
shown by the construction at the right in Fig. 7. The 
construction at the right is formed by compressing the 
lunes into a single reflecting circle and extending the 
points into arcs equal to the angular divergence of the 
limiting incident rays of the construction at the left. 
The right-hand figure also is a representation which 
could be used to display angular mosaic spread. For 
this case the arcs are, of course, generated by an array 
of reciprocal lattice points for each of the crystal blocks 
which make up the crystal mosaic. The right-hand 
representation is a convenient condensation which 
shows the instantaneous reflecting conditions when 
nondispersive factors are operative. 

In Fig. 8 equivalent representations of the role of 
dispersive factors are shown. The conventional con- 
struction is shown at the left. The inner circle of re- 
flection represents the Ewald circle for the maximum 
incident wavelength and the outer circle represents the 
minimum incident wavelength. 

The intermediate circle represents a characteristic 
wavelength. (The diagram is the familiar construction 
for Laue diffraction.) By changing the scale of the 
reciprocal lattice construction appropriate to each of 
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the circles included in the lune formed by the limiting 
inner and outer circles, one obtains the 'equivalent' 
construction shown at the right. Each point becomes 
a radial 'streak' (familiar in unfiltered precession dia- 
grams).* The further the point is from the origin of 
the reciprocal lattice the longer is its streak. The right- 
hand representation applies not only to spectral band 
pass, but also to such dispersive factors as radial mosaic 
spread. The construction at the right shows overlap of 
these streaks; it is clear that the further the streaks 
from the origin, the greater the overlap. The overlap- 
ping of the streaks shows graphically interference of the 
type encountered when harmonics of a given radiation 
simultaneously satisfy Bragg's law. The extent of the 
radial streaks (or line segments) will be determined by 

* It has been correctly pointed out to us by J. Hornstra that 
in the case of crystal monochromatized radiation, anti-parallel 
arrangement, the radial streaks are not truly radial but take 
a direction such that the streak is inclined to the radial direc- 
tion by the angle O,w. 

o 

Fig.9. Representation showing combined effect of both dis- 
persive and nondispersive factors. 

the sum of the ranges of the individual dispersive com- 
ponents. As this sum becomes larger, the overlapping 
becomes greater and isolated streaks occur closer to 
the origin of reciprocal space and begin to overlap. 
The manifestation of such overlap is evident in Fig. 2(a) 
as was already discussed. The construction at the right 
in Fig. 8 shows how the resolution of diffraction lines 
from adjacent reflections is influenced by the extent of 
the range of the dispersive factors. 

In Fig. 9 is shown the effect in reciprocal space of 
the combination of both the dispersive and nondis- 
persive factors. In this diagram each point of the radial 
streaks has been extended into an arc. Here we see an 
overlap of a second kind. Whereas the irresolution 
evidenced by overlap of the first kind (Fig.8) takes 
place at a distance from the origin and along radial 
lines, an enhancement of the irresolution occurs as 
evidenced by overlap in directions normal to the radial 
lines. One effect of the second kind of overlap is to 
bring the irresolution of adjacent reflections closer to 
the origin. 

In considering the constructions of Figs. 7, 8 and 9 
it is clear that the resolution of adjacent reflections is 
enhanced for a given reciprocal net for shorter spectral 
band passes. This is demonstrated in Fig. 10 which 
compares the observed diffraction in the vicinity of the 
0,0 r 12 reflection of topaz under different spectral band 
pass conditions. To maintain the diffraction from 
0,0,12 Ke isolated from the neighboring 0,0,10 and 
0r0tl4 reflections, the profile must be restricted within 
the confines of the reciprocal lattice repeat which for 
the case cited is 0.2384 A -1. Fig. 10 shows that such 
restriction is not accomplished with either the direct 
beam (no filter) or a single filter. It is satisfied by the 
crystal monochromatized profile and also by the band 
pass which would be admitted through perfectly bal- 
anced Zr and Y filters. 
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Fig. 10. Observed resolution in the vicinity of the 0,0,12 reflection of topaz for unfiltered, Zr-filtered and crystal monochromatized 
radiation. Curves obtained in 2:1 step scans. Abscissa shows equivalent wavelength scale. 
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Although the Zr -Y filters permit resolution of ad- 
jacent profiles at the 20 angle cited, the resolution will 
not persist at higher 20 angles where the streak defined 
by the separation of the absorption edges of Zr and Y 
becomes extended and eventually becomes longer than 
the repeat. It can easily be shown that resolution of 
adjacent reflections using the balanced filter pair Y-Zr  
with Mo radiation cannot be maintained over the com- 
plete 20 range of crystals with unit-cell dimensions lar- 
ger than 7.2 ~.  Similarly, the resolution cannot be 
maintained over the complete 20 range with the Ni-Co 
pair and Cu Kc~ radiation for cell sizes exceeding 9.64/~. 
The use of balanced filters is beset with other problems 
(Ladell, 1965). For techniques based upon their use the 
reader is referred to the work of Young (1963). 

The superposition of overlapping reflections, as seen 
in the simplified representations of Figs. 7, 8, and 9, is 
a source of systematic error. Possible reduction or 
elimination of overlap is conditioned both by the ranges 
and form of the component distributions. In the re- 
maining sections we consider these aspects of the prob- 
lem. 
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Fig. 1 1. Ratio of convolution line width to sum of component 
line widths as a function of ratio of component line widths. 
We is line width of Cauchy component, W0 is line width of 
Gaussian component and We*g is line width of convolution. 
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Fig. 12. Line widths for quartz study crystal. A:  Calculated 
f rom two crystal spectrometer data. Line width of WL/3b 
A2 = 0.94 X.U.  B, C, D: Theoret ical  profile after convolu t ion  
with Gaussian component with widths of 0.04 °, 0.06 ° and 
0-08 ° respectively. E: Theoretical profile after convolution of 
spectral profile with Cauchy component of width 0.042 °. 
Observed data shown by open circles appear to agree with 
this case. 

With UM(/3) defined by equations (16) and (5), the 
observed profile using an incident beam of crystal 
monochromatized radiation is given by 

U0( /3)=  UI *UM *U 5 *U6(/3) . (5) 

The range of Uo(/3) is the sum of the ranges of the in- 
dividual components; i.e. 

2/30= 2[tim +ill +/35+/36] (19) 

where tim is the half-range of the spectral distribution 
diffracted from the study crystal, 

/ 3 M  = / 3 2  "31-/34 "Jl-/36 ( 2 0 )  

where A, f12, and f14 have already been defined (Table 1) 
and f16 is the half range of the distribution V6(fl), defined 
in equation (17). As pointed out in Appendix A, the 
range of a (and consequently f16) has a lower limit O'min 
and a controllable upper limit. As is pointed out in 
Appendix B, the mosaic spread distribution V6(a) for 
monochromator crystals normally used is such that the 
range 0" 6 is narrower even than the formal limits. Ac- 
cordingly, we will neglect this contribution to the range 
2tiM, and afortiori to 2/30. The quantity ~2"1-/34 is the 
range of angular divergence from the virtual source to 
the study crystal. The range/30 is finite or infinite now 
depending only upon the ranges of the components U1, 
Us, and U6. For the strain-free crystals such as topaz, 
quartz, silicon, or CaFz which we have been studying, 
we can assume both/35 as well as/31 to be effectively 
small. Thus, Uo(/3) of equation (5) is very well approx- 

imated by Uo(/3) = constant UM * U6(/3) • (21) 

Under these assumptions we have attempted to char- 
acterize U6(/3). Since the stenciling of the spectral dis- 
tribution does not significantly alter the central shape 
of the spectral profile, Uo(/3) as given by equation (21) 
represents (a) either the convolution of an essentially 
Cauchy distribution with a Gaussian distribution, or 
(b) a Cauchy with another Cauchy. A consequence of 
convolution theory is that the line width of the con- 
volution of two or more Cauchy distributions is the 
sum of the line widths of the component distributions. 
A similar theorem applies for the squares of the line 
widths of Gaussian distributions in convolution. For 
mixed convolutions where the components are respec- 
tively Cauchy and Gaussian distributions, the line width 
of the convolution is less than the sum of the com- 
ponent line widths. We have calculated the ratio of the 
convolution line width, We,g, and the sum of the com- 
ponent line widths, We+ Wg as a function of the ratio 
of the component line widths We~ Wg. The results are 
shown in Fig. 11. In Fig. 11 one observes that the con- 
volution line width is narrowest when a Cauchy with 
line width 1.5 is convoluted with a Gaussian with line 
width 1-0. 

In Fig. 12 the line widths of observed profiles for a 
quartz study crystal are plotted against tan 0. The 
angle scale spectral line width for WL/31 (approximately 
the line width of Uu) as a function of tan 0 for our 

AC21 - 8  
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experimental conditions is shown as line A. The spec- 
tral line width used was based upon the work of Wil- 
liams (Compton & Allison, 1935). The assumption that 
U6(fl) is a Gaussian distribution leads to expected 
theoretical line widths according to the parametric 
lines B, C or D. The line of regression for the observed 
data, however, is line E which is parallel to line A. 
This constitutes suggestive evidence that U6(fl) is a 
Cauchy distribution and is not accurately modeled by 
a Gaussian. Similar results are obtained when crystal 
monochromatized Mo K0c radiation is used and line 
widths obtained for topaz are plotted against tan 0. 

The distinction between the Cauchy or Gaussian 
model in the estimation of systematic error is shown 
in Fig. 13. In Fig. 13 the percentage area found by in- 
tegration over a given range is plotted against the range 
in line widths for A, a Gaussian distribution; B, an 
infinite Cauchy distribution; and C, a truncated Cauchy 
distribution. The distribution C was truncated at 45 
line widths, which is the experimentally observed spec- 
tral band pass at 138 ° 20 for UM(fl). Whereas virtually 
the entire area is included within 3 line widths for the 
Gaussian distribution, less than 98 7o is included within 
30 line widths for the infinite Cauchy distribution. The 
truncated Cauchy gives intermediate results. 

In Fig. 14 the systematic error expected for fixed 
ranges Aco=2, 3 and 4 ° based upon the assumption 
that the observed profile can be modeled upon an 
essentially truncated Cauchy distribution are shown. 
Thus, the maximum error in failing to scan the entire 
profile with a 2 ° scan is 4"27o at 150 ° 20. For a 4 ° scan 
the corresponding error is 1.57o, but there is no error 
in the 4 ° scan for the 20 region under 100 ° 20. In all 
cases the errors, where they exist, are linear with tan 0. 
Since these depend upon the spectral band pass which 
can be narrowed experimentally, conditions can be im- 
posed to diminish systematic error further. 

Values shown in Fig. 14 should be acceptable only 
as indicators of the order of magnitude of systematic 
error because of the idealized component distributions 
assumed in the analysis. 

Receiving apertures 

Since both U6(fl), a nondispersive component, and 
Uu(fl), a dispersive component, extend over large ran- 
ges, both distributions possessing appreciable Cauchy 
character, it is difficult to see how one set of minimum 
receiving apertures can be implemented in practice for 
either the co or 2:1 scan for the entire 20 range. In some 
instances it may be impractical to maintain minimum 
apertures large enough to accommodate the detection 
of the generated profile. Thus, for example, if U6(fl) 
has a Cauchy component of line width 0.05 ° the con- 
tribution to the minimum receiving aperture 4fl6 for 
2:1 scanning needed for this component alone will be 
effectively 5-0 ° (since approximately 50 times the line 
width is required to accommodate 997O of the inten- 
sity). Similarly, large apertures will be required for co 

scan techniques even for crystal monochromatized 
truncated Cauchy spectral distributions at high 20 
angles (see Alexander & Smith, 1962). 

The constructions which were developed to show the 
systematic error which may arise from failure to resolve 
diffraction effects involving adjacent reciprocal lattice 
points are also useful for demonstrating some aspects 
of the role of receiving apertures used in conjunction 
with 2:1 and co scan techniques. In Fig. 15 an isolated 
reflection is considered. Also, a succession of circles of 
reflection are shown. As the crystal is rotated, an arc 
of each successive circle encounters a different portion 
of the generalized reciprocal lattice point. The requisite 
aperture, assumed to be of constant size during the 
integrated intensity scan of the reflection, must be large 
enough to detect all the diffraction represented by the 
successive intersections of the circle of reflection and 

% 
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95 

90 3 10 20 30 

Number of Line Widths 

Fig. 13. Percentage of total area included within finite limits 
of  integration. A Gaussian distribution. B Cauchy distri- 
bution.  C Cauchy distribution truncated at 45 line widths. 

1 
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6 

°/o 4 
Error 

0'5 110 1"5 2'-0 2"5 3"0 

tane 

Fig. 14. Systematic error in integrated intensity due to definite 
range of scan as a function of tan 0 for ranges of 2, 3 and 4" 
respectively. The observed profiles are assumed to be Cauchy 
distributions truncated at 45 line widths. 

Fig. 15. Role of  receiving aperture in scan of isolated reflec- 
tion. Representat ion at left is for 2:1 scanning technique and 
representation at right is for co scan. 
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generalized reciprocal lattice point. In the constructions 
of Fig. 15 the respective requisite apertures are shown 
by the heavily shaded arcs. In the 2:1 diagram (left 
figure) as the crystal is rotated, the detector also moves 
in 2:1 synchronization and accordingly the heavily 
shaded arcs progress away from the origin of the 
reciprocal lattice (up angle scan). The requisite size is 
determined by the nondispersive ranges, or the width 
of the generalized reciprocal lattice point. In the co 
scan (right figure) the heavily shaded arcs are a constant 
distance from the origin of the reciprocal lattice. In 
this case the arc length, or requisite aperture, is de- 
termined by the dispersive components or the radial 
dimension of the generalized reciprocal lattice point. 

Now it is clear that, for the case of an isolable re- 
ciprocal lattice point, the difference between the 2: 1 and 
co scan in terms of the diffraction or integrated inten- 
sity measured is only in the size of the aperture. Where 
the sum of ranges of dispersive components is equal to 
the sum of ranges of the nondispersive factors, the 
requisite apertures will be the same for both scan 
techniques. Such an equality can exist only at a specific 
20 angle. For lower 20 angles, the requisite receiving 
aperture for the co scan becomes less than that for the 
2:1 and conversely the requisite aperture for the co scan 
becomes larger for higher 20 angles. 

The use of crystal monochromatized radiation makes 
the dominant range that due to the nondispersive com- 
ponents since the principle dispersive factor, the spec- 
tral band pass, is minimized. Accordingly the co scan 
technique for this case is the preferable technique, but 
only because this technique requires the smaller over- 
all aperture except, of course, at extremely high 20 
values. As was previously noted the graphical de- 
scriptions shown in Figs. 7, 8, 9 and 15 are simplified. 
Reference to Table 1 shows that the ranges of U2(fl) 
and U4(fl), which are nondispersive components, con- 
tribute to the requisite receiving aperture for both scan 
techniques. Thus, the simplified discussion is only ap- 
proximate. A more accurate graphical description can 
be developed with the use of the concept of a detecting 
volume (Spielberg & Ladell, 1960), but the complexity 
of such constructions obscures their interpretation. 

It should be emphasized that the control of receiv- 
ing apertures has no direct effect on the resolution of 
adjacent reflections where these are not resolved in the 
generated diffraction pattern as seen, for example, in 
Figs. 8 and 9. 

Conclusions 

Our work indicates that systematic error in intensity 
measurements can be significantly reduced by using 
crystal monochromatized radiation. Evaluation of sys- 
tematic error for filtered radiation is intractable be- 
cause of the large spectral band pass and the am- 
biguity of background determination; whereas in the 
monochromator case, both those factors are signifi- 
cantly reduced. There does not appear to be any pri- 
mary advantage on the basis of which either a 2:1 or 

co scan technique is to be preferred. Suggestive evi- 
dence exists to indicate that mosaic spread may be better 
modeled upon a Cauchy rather than a Gaussian dis- 
tribution for certain types of crystals. 

A P P E N D I X  A 
Monochromator geometry 

To calculate the relationship between 5, a and Aft in- 
troduced on page 109 (equations (9), (10) and (11); 
see also Fig.4), we assume (Fig. 16) a Cartesian co- 
ordinate system in which the source S is placed at 
( - a ,  0) and the study crystal P at (a, 0). The mono- 
chromator crystal lies along the line AB and the ray 
of wavelength 2 passes along p, making an angle ~ with 
the x axis, and is reflected at R along the path q to inter- 
sect the x axis at (a, 0) at an angle ( 2 0 / - ~ ) .  From 
simple trigonometry we find 

t 7  
sina = ~ sin20M (A1) 

1 
cos c~ = ~ (p + q cos 20M) (A2) 

4a 2 =pZ + qZ + 2 pq cos 20M . (A3) 

The coordinates of R are 

( - a + p  cos c~, - p  sin c0 
o r  

(p2_q24a ' --Pqsin2OM).2a 

The coordinates of A, the intersection of AB and the 
x axis, are ( - - a - -  - - - ,  0 . q - - p  

Knowing the coordinates of A and R we find the 
equation of the line AB to be 

[(q - p )  sin OM] X + [(q + p )  COS Oi] y + (q + p) a sin OM 
= 0 .  (A4) 

Consider an arbitrary point T on line AB. As already 
pointed out on page 109, radiation of wavelength 2' is 
reflected from T toward P. We may determine the cor- 
responding value of O'M=OM-'}-3 and the angular in- 
clination of the crystal blocks of the mosaic diffracting 
at T by examination of the circle drawn through S, P 
and T. This circle has its center at (0, c) on the y axis 
and radius r=a/sin 202 (just as in the case of the 
Bragg-Brentano parafocusing condition). The equation 
of the circle is 

X 2 -'~ (y - c )  2 = a 2 / s i n  2 2 0  2 . (A5) 

Since the circle must pass through (+  a, 0) 

c=a cot 202 . (A6) 

A radius drawn from the center of the circle to T 
makes an angle 2q with the y axis. The effective normal 
to the block of the mosaic diffracting at T makes an 

A C 21 - 8* 
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angle r /wi th  the y axis. From Fig. 16 we see that the 
coordinates of T are (r sin 2r/, c - r  cos 2r/) or 

[ )] a sin 2r/ a (cos 20M COS 2r/ 
sin 20~  sin 20M 

Substituting these coordinates into (A4) yields 

sin 2 ~/ = 
1 

4a 2 [(p+q)(p--q)cos(20~--Om) sin Om 

+ (p + q) cos OM x 

V4a2--(p+q) 2 cos 2 (20~t-- 0M)] (A7) 

1 
cos 21/=  - ~ T  [(p+q)Z cos (20~--OM) COS 0m 

+ (q--p) sin OM X 
V4az--(p+q) z cos z (20~--OM)]. 

To determine tr it is necessary to know the inclina- 
tion of the normal of crystal blocks, not with respect 
to the y axis, but rather the inclination (r/-~/0) with 
respect to the normal to the crystal surface. We may 
determine r/0 by setting O~=Om in equation (A7), 
yielding 

sin2t/o= ~-~(p2--q2) sin2OM; 0 ] (A8) 

1 [(pZ+q2)coS2OM+2pq]; 1 cos 2r/o = 

l } 
sin r/o = - - ~  ( p -  q) sin OM; 0 

1 (A9) 
cost/0= --2-~(p+q) cos OM; 1 . 

The second solutions in equations (A8) and (A9) 
may be rejected since they correspond to diffraction 
from that point of the crystal intercepted by the y axis. 

Indeed, examination of Fig. 16 and equations (A7) 
shows that for each wavelength 2' there are two points 
on the crystal from which a properly oriented crystal 
block may reflect 2' to P. However, the value of 
~r = r/-r/0 is different for the two points. There is, how- 
ever, a value of 2' for which the two points degenerate 
to one point. This corresponds to the smallest 20M 
angle and wavelength which can be diffracted toward P. 
This angle, 20£i,, can be obtained by equating to zero 
the radical in equation (A7) and noting that 20£i~= 
( 2 0 m i  n -  OM) + OM and 2fimin = (20~i n - -  OM) -- OM'. 

s 

sin 2 0rain = 

2 (asinOM+ Vq-p sin OM cOS OM) 
P+q 

sin20~,i ,--  2 (a cos 0M -- ~ sin z0M) 
P+q 

(A10) 

sin 2•min = 

-- ~ (a sin OM -- v~q--p sin OM cos OM) 
P+q 

COS 2&rain = ~ 2  (a cos OM + V ~  sinZ OM). 
P+q 

(Al l )  

The corresponding values of r /are  

sin 2 r/rain - p -  q sin OM 
2a 

P+q cos 2r/min = 2----a-- cos Oi 
(A12) 

t-y 

A S (-a, P(a,O) = t" x 

8 

Fig. 16. Monochromator geometry. 
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sin ~lmin = ( 2a- (p+q)  c°sOlvl-) 

2a+(p+q) cos 0M) ~ (A13) ( c o s  //rain 
\ 4a . " J 

A maximum value of wavelength which can be dif- 
fracted toward P is determined by limiting the diver- 
gence angle from S (Fig.4). This will set a maximum 
value for i /and hence for a. 

Substituting equations (A7) and (A8) into the iden- 
tities sin 2a = sin 2r/cos 2r/0-cos 2r/sin 2~/0, and cos 2a 
= cos 2r/cos 2~/0 + sin 21/sin 2~/0, we find (noting that 
20~t- 0M = OM + 2J) : 

sin 2 a = 

q +P [ (q-p)  cos (0M + 25) sin 0M + R cos 02w] 
4a 2 

(A14) 
1 

cos 2 a = -~TaZ [( p + q)2 COS (OM q- 26) cos OM +_ 

R ( p - q )  sin 0M]. 

where 
R = ]/4a 2-  (p + q)Z cos z (OM + 26). (A 15) 

Setting R = 0 again yields the value of amin  correspond- 
ing to/']mln: 

sin 20"mtn --  q - p  sin 0~¢ ~a 
(A16) 

cos 2 amin  = q + p  "2a cos 0M. 

A T" R T 

Fig. 17. Rela t ionship  between 7, tr and J = 0 ' - 0 .  
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Fig. 18. W(7) for  the case K 1 = 2 1 9  degrees-1 and K2=0-364  
degrees-1. 

Comparison of equations (A9) and (A16) shows that 
amin=½~0. 

The relationships between a, J, and Aft are seen in 
Fig. 17, where from the triangle RTP (positive value 
of a), 

y = ~ - 0 M -  - a + y - = a + J (A17) 

since 0 2 =  0M + J. 

APPENDIX B 
Properties of W(y) 

As defined on page 109, the function W(7) = V 3 ( 5 ) .  V 6 ( a ) ,  

where 7, a and 5 are related by equations (9) through 
(12). Since a is double-valued, W(7) has two branches, 
W+(7) and W-(7) where W±(7)= V3(5). V6(a±). These 
two branches join (and a is degenerate) for the value 
of J =  Jm~n satisfying equation (A 11) which, as pointed 
out in Appendix A, corresponds to the minimum wave- 
length reflected by the monochromator crystal to the 
point P in Figs. 4 and 16. 

We may study the behavior of W(Tfl) by assuming 
certain models for V3(J) and V6(a). We assume V3(5) 
to be Cauchy and V6(a) to be either Cauchy or Gaus- 
sian; i.e. 1 

V3(5) - -  1 + K12152 (B1) 

V6(a)=exp(- K~a 2) (B2) 
o r  

1 
V6(a) - 1 + ~;] a 2 " (B3) 

If we assume that V6(a) varies more slowly than 
V3(5), then W(7) will exhibit a maximum wherever 
V3(5) exhibits a maximum. From equation (B1) we 
see that this occurs when J = 0. By inspection of Fig. 16, 
or of equation (A8), it is clear that the angular separa- 
tion between the  corresponding values of a+ and a -  
and hence of 7+ and 7-, equation (A15), is r/0, given 
by equation (.49). 

From the data of Williams (Compton & Allison, 
1935) for the width of the WLfla line, for a silicon (111) 
monochromator crystal, we find Ka=219 degrees -a. 
If we assume V6(a) to be Gaussian (equation B2) with 
a width 50 times greater than that of V3(5),/<2 = 3.64 
degrees -1. (This would correspond to a monochro- 
mator rocking curve width of about 0.5°.) Typical values 
ofp and q are 67 and 106 mm respectively. Under such 
circumstances, r/0=2.93 °, but W+(7) is less than 1 × 10 -5 
throughout its range, and is therefore negligible. If 
/£2=0.364 (rocking curve width 5°), W+(7) attains a 
maximum value of 0.31. This case is plotted in Fig. 18 
along with the appropriate curve for W-(7). It should 
be noted that the spectral dispersions in the two bran- 
ches of W(7) have opposite senses; i.e. d2/d(7) is posi- 
tive for W+(7) and is negative for W-(7). This can be 
seen by examination of Fig. 16, or by differentiating 
equation (A14) with respect to J, and noting that 
da/d5 has the same sign as d2/d(7). 
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Considering the possibility that V6(a) is Cauchy 
(equation B3), if  we assume a width of V6(cr) as much 
as 50 times greater than that of V3(c~) (K3=4.38), the 
max imum value of IV+(),) is 6 x 10 -3. 

We may simplify the equation (A 14) for a by making 
use of the approximations s in- lx  = x and cos (0M + x) 
= COS Ou--X sin OM for small values of x, and by 
neglecting terms involving x z etc. For the case q>p,  
we obtain 

1 q + P  {[(q +p)2 cos 2 0M + (q--p)2 sinZOM]6 + 
a+ = 4a z q--P 

(q_p)2 sin 0M COS 0~t} (B4) 

1 q + p  
a -  -- - -  [(q +p)2 COS 20M 

4a z q - -p  
_ ( q _ p ) Z s i n  20M]6. (B5) 

For  the case q <p ,  we obtain 

1 P + q [(p + q)2 COS 20M --(p-q)2 sin 20M] (~ 
a+ -- 4a z P--  q 

1 P + q  {[(p+q)Zcos  z O M -  
0-- - 4a 2 P -  q 

( p _ q ) 2  sin 20M] ~ _ ( p _ q ) 2  sin OM COS OM} • 

For  the case q = p  

(B6) 

(B7) 

a+ = + / t a n  OM 1/5. (B8) 

We have already demonstrated numerically that for 
the case q>p,  the branch W+(?) is usually negligible 
and hence the solution (B4) may be neglected. Simi- 

larly for the case q <p ,  W-(?) is negligible and the solu- 
tion ( B 7 ) m a y  be neglected. Equations (B5) and (B6) 
are actually identical. 

Only for the case q = p  do both branches of W(?) 
appear, and we may simply ignore this case by choos- 
ing q and p to be quite unequal in value. 

It may be concluded that, except for rather patho- 
logical monochromator  crystals, the curve W(~) has 
only one branch for a reasonable choice of the values 
o f p  and q. 
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Twist-Korngrenzen und andere parakristalline Gitterstiirungen in Poly/ithylen-Einkristallen 

VON R. HOSEMANN, W. WILKE UND F.J .  BALTA CALLEJA* 
Fritz-Haber-lnstitut der Max-P[anck-Gesellschaft, Berlin, Deutschland 

(Eingegangen am 26. Juli 1965 und wiedereingereicht den 29. Oktober 1965) 

The analysis of equatorial small angle X-ray scattering of parallel oriented mats of polyethylene single 
crystals shows the existence of colloidal units with an average diameter of 300/k in the lateral dimension. 
The line profile analysis of hhO X-ray reflexions reveals that these structure units are mosaic blocks 
with paracrystalline distortions with g = 2 %. Adjacent mosaic blocks must change their orientation by 
at least 0-6 °, because otherwise they would scatter coherently. Black-field electron microscope moir6 
patterns of every two nearly parallel oriented single crystals obtained by other authors show straight 
lines with a trembling character, which can be explained by the size of the mosaic blocks and twist 
boundaries. The axis of disorientation is orthogonal to the chain direction. Average disorientations of 
0.6-11 ° can explain both the moir6 patterns and the X-ray diffraction photographs. The paracrystalline 
distortions within a single mosaic block are explained in terms of statistically distributed Reneker 
defects, 2nn+~-helices and damped thermoelastic waves. 

Einleitung 
Wenn zwei geniigend dtinne Kristalle um einen kleinen 
Winkel  gegeneinander verdreht fibereinanderliegen, 
kann man  im Elektronenmikroskop Moir6muster beob- 

* Gegenwfirtige Anschrift" Centro de Investigaciones gisi- 
cas, C.S.I.C., Madrid 6, Spanien. 

achten. Solche Moir6muster wurden yon mehreren 
Autoren (z.B. Agar, Frank  & Keller, 1959; Fischer, 
1963; Bassett, 1964; Holland, 1964) beobachtet. Die 
entsprechenden theoretischen Grundlagen sind in der 
Arbeit  yon Agar, Frank  & Keller (1958) enthalten. 
Die Moir6muster yon Poly~ithyleneinkristallen er- 
strecken sich tiber Bereiche bis zu mehreren /z Aus- 


